SUPPLEMENTARY INFORMATION

Bipolar supercurrent in graphene

Hubert B. Heersche, Pablo Jarillo-Herrero, Jeroen B. Oostinga, Lieven

M. K. Vandersypen and Alberto F. Morpurgo

1. Effective time reversal symmetry breaking in graphene

In the long wavelength limit, the effective Hamiltonian for the valley around one K-point is a 2x2 matrix acting on the components of the wavefunction on the two independent sublattices of graphene (the so-called A and B atoms). It reads

$$H_{K} = \hbar v_{F} \begin{pmatrix} 0 & k_{x} - ik_{y} \\ k_{x} + ik_{y} & 0 \end{pmatrix}$$

with $\vec{k} = (k_x, k_y)$ the momentum of the electron measured relative to the K-point. This 2x2 matrix is left invariant by the anti-unitary transformation $U = i\sigma_y \hat{K}$, i.e. $U^{\dagger}H_{K}U = H_{K}$, where σ_y is the usual Pauli matrix and \hat{K} denotes complex conjugation. *U* is the usual operator associated to the time reversal symmetry transformation for spin ½ particles. In this sense, the operator *U* defines an "effective" time reversal symmetry transformation that is applicable in a single valley only and reverses the sign of the momentum \vec{k} relative to the K-point.

In the presence of certain types of smooth scattering potentials (see Ref. [1]), there exist "effectively" time-reversed trajectories along which the electrons can propagate while remaining within the same valley. On this basis, Suzuura and Ando¹ predicted that these trajectories cause a quantum correction to the conductivity in the form of weak antilocalization.

The operator *U* however does not represent the true time reversal symmetry transformation for electrons in graphene, as true TRS connects states belonging to the two opposite K-points in graphene and cannot be described within the single K-point approximation. For this reason the effective TRS symmetry represented by *U* is not robust against physical perturbations that normally preserve TRS (e.g. static potentials). For instance, effective TRS is broken by (i) curvature in graphene^{2,3} (that can be described within a single K-point approximation as a vector potential), (ii) scattering at edges⁴, and (iii) trigonal warping⁵ (i.e., by including quadratic terms in the long wavelength expansion from which the one K-point Hamiltonian is obtained). As a consequence, in real experimental samples the observation of effects associated to the symmetry *U* is expected to be very difficult (at least in samples of current quality).

References

1. Suzuura, H. & Ando, T. Crossover from symplectic to orthogonal class in a twodimensional honeycomb lattice. *Phys. Rev. Lett.* **89**, 266603 (2002).

2. Morpurgo, A. F. & Guinea, F. Intervalley scattering, long-range disorder, and effective time reversal symmetry breaking in graphene. *Phys. Rev. Lett.* **97**, 196804 (2006).

3. Morozov, S. V. *et al.* Strong suppression of weak localization in graphene. *Phys. Rev. Lett.* **97**, 016801 (2006).

4. Berry, M. V. & Mondragon, R. J. Neutrino billiards: time-reversal symmetrybreaking without magnetic fields, *Proc. R. Soc. Lond. A* **412**, 53-74 (1987).

5. McCann, E., Kechedzhi, K., Fal'ko, V.I., Suzuura, H., Ando, T. & Altshuler, B. L. Weak localisation magnetoresistance and valley symmetry in graphene. *Phys. Rev. Lett.* **97**, 146805 (2006).